
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2275
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Porting of Automotive Application on to
Embedded Multicore Platform

Jijinraj P

Abstract— In modern computer hardware, increase in processing capacity is gained by introducing more processor cores but not with increased clock
speed. This may imply reduction in processing capabilities as far as the individual cores are concerned. So it is necessary to partially restructure the
applications that are not designed to benefit from multiple cores for maintaining the existing performance. To improve the quality of experience for drivers
as well as passengers, multi-core embedded systems are getting adopted on a v ery large scale in automotive industry. But measures and methodolo-
gies for porting applications are yet to be standardized. Solving the issues related to it will open up interesting avenues for utilization of multi-core sys-
tems in automotive industry. This work emphasizes on porting legacy automotive application onto embedded multicore platform for better performance.

Index Terms— Embedded multicore, Loop Parallelization, cross compiler tool chain, OpenMP, Optimization, Automotive Applications

—————————— ——————————

1 INTRODUCTION

Demand for higher performance in electronics was
generally met by shrinking silicon chip and increasing the fre-
quency of operation, but it was found that this approach can-
not be continued forever. This led to the evolution of multi-
core innovation. More and more applications now require
higher performance out of the platform on which they are
working. Processor architects are therefore moving towards
multi-core processors. All kinds of integrated circuits and elec-
tronic systems including analog components, communications
systems, logic devices, micro electromechanical systems
(MEMS), sensors and microcontrollers are linked together to
enable a safe and enjoyable driving experience. The use of sin-
gle processing cores being replaced by multicore processors
has opened up new challenges in the embedded domain. The
code written for single processing cores and also the hardware
peripherals being limited, has brought about the need for re-
structuring of the earlier code called the Legacy code.

 Porting above mentioned legacy code to a new mul-
ti-core platform is now a preferred method instead of writing
new code from scratch. One of the major challenges in migrat-
ing serial software to a parallel environment is to ensure that,
the system’s functionality is still correct after spreading the
functionality across several cores, all executing simultaneous-
ly.
 After the introduction of multi-core processors, software
developers have started writing parallel programs for the
effective use of available multiple cores. However, there are
sequential legacy applications that have been developed over
the past few decades. If such applications are being executed

on multicore hardware, then optimal usage of all cores will
not be guaranteed. Only one core will be utilized by such
applications and the other cores would remain idle, if the
operating system does not support any parallelism while
scheduling. This is where it is necessary for the need of
conversion of existing code which execute sequentially to one
where the parallel architecture of multicores are utilized fully.
 If an application’s work can naturally be broken up, run in
parallel, and aggregated at the end of an operation, such ap-
plications can be benefited from multi-core processing. Pro-
cessor-intensive tasks such as video and audio processing,
scientific and financial modeling applications and CAD ren-
dering are examples of such applications. This work comprises
of taking an existing application of automotive nature and
effectively partition the application and its efficient porting on
a multi-core platform.

2 LITERATURE SURVEY
 Advances in computing hardware provided significant
increase in the execution speed of software with less effort
from software developers. The arrival of multicore processors
has provided the software developers with a new challenge
that now they need to master the programming techniques to
fully exploit the potential of multicore processing. First and
fore-most important decision the developers must make when
migrating to multicore is to select the appropriate form of
multiprocessing for their application requirements which are
basically, Asymmetric Multiprocessing (AMP), Symmetric
Multiprocessing (SMP), and Bound Multiprocessing (BMP) [1].
This helps to determine the easiness with which maximum
concurrency can be achieved for both new and existing codes.

 The performance achieved by multi-core architec-
tures was previously only provided by High Performance
Computing (HPC) systems. The HPC programmers are re-

————————————————
• Jijinraj P is currently pursuing masters degree program in embedded sys-

tems engineering in amrita University, India,E-mail: jijinrajp@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2276
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

quired to have a deep understanding of the hardware architec-
ture in order to adjust the program explicitly for that hard-
ware. This is not a suitable approach in embedded systems
development, due to requirements on productivity, portability,
maintainability and short time to market the product. The per-
formance improvements of using multicore processors depend
on the nature of the applications as well as the implementation
of the software [2]. To take advantage of the concurrency of-
fered by a multi-core architecture, appropriate algorithms
have to be used to divide the software into tasks (threads) and
schedule them to maximize the utilization of the processors.

Real-time systems can highly benefit from the multi-
core processors, as critical functionality can have dedicated
cores and independent tasks can run concurrently to improve
performance and thereby enable new functionality [3]. Moreo-
ver, since the cores are located on the same chip and typically
have shared memory, communication between cores is very
fast. Since embedded real-time systems are typically multi-
threaded, they are easier to adapt to multi-core than single-
threaded, sequential programs, which needs to be parallelized
into multiple threads to benefit from multi-core. If the tasks
are independent, it is simply a matter of deciding on which
core each task should execute (for embedded real-time sys-
tems, a static and manual assignment of cores is often pre-
ferred for predictability reasons.) However, many of today’s
existing “legacy” real-time systems are very large and com-
plex, typically consisting of millions of lines of code which
have been developed and maintained for many years. Due to
the huge development investments, it is normally not an op-
tion to throw them away and to develop a new system from
scratch. To benefit from multi-core processors, they therefore
need to be migrated from single-core architectures to multi-
core architectures. The migration should maximize the per-
formance without compromising correctness and quality at-
tributes such as maintainability and portability [4].

 Firstly, in order to compose high-performance appli-
cations, facilities from new hardware need to be exploited.
Secondly, when additional cores are introduced in processor
architecture, the speed of a single core may drop. Then, in or-
der to maintain the existing performance, current applications
need to be at least partially redesigned to benefit from parallel
processing capabilities. These steps adequately reflect the ac-
tivities –partial redesign, management of concurrency, and
verification of the effect of parallelism that will be needed in
practice, when porting existing sequential applications to mul-
ticore environment [5].

When porting legacy code from single-core systems to
a multicore SMP system, or even when creating code for a
multicore environment from scratch, the issues are:

• Code partioning from the single-core design to the
multicore domain..

• Thread safety, Thread communication and
synchronization.

• Probability of bugs like priority inversions, race
conditions, deadlocks, etc.

 Even if some of these problems can be prevented by
an appropriate system design expertise, there is always the
need to verify and track the results [6].
Frequent thread migration on a multicore system might hap-
pen if the number of threads queued for execution is much
higher than the number of cores available for executing them. .
In order to balance the load between available cores, the oper-
ating system might schedule threads to cores down to time-
slice level. This potentially impacts performance, due to the
overhead and cache misses.

 To make the most efficient use of a multicore de-
vice, both hardware and software centric approaches are
available. Hardware centric approaches are applicable to sin-
gle-core systems and approaches like out-of-order execution
(instruction reordering to avoid pipeline stalls) are used.
Compared to the parallelism on instruction level, concepts
such as single instruction multiple data (SIMD) and multiple
instruction multiple data (MIMD) allows resource utilization
on thread level [7]. From an application source code develop-
ment perspective, these approaches are actually transparent.
Software-related approaches comprise concepts like Symmet-
rical MultiProcessing (SMP), where a single operating system
controls hardware resources then, dynamically assigns these
to programs and threads which are to be executed simultane-
ously.

 In parallel programming, both task and data par-
allelism are often considered to be mutually exclusive ap-
proaches. Still many applications benefit from both forms of
parallelism. This is also the case in image processing. Image
processing has found applications in many fields and applica-
tions, including the medical imaging, film and entertainment
industry, weather forecasting, industrial manufacturing and
inspection, etc. In some of these areas, the size of the images
used are very large, yet the processing time has to be very
short to keep up the timing constraints.. Sometimes real-time
processing (keeping up with the frame rate of the camera) is
required. As a result, there has been an increasing interest in
the development and the use of parallel algorithms in image
processing in the last decade [8]. Since image processing ap-
plications normally contain a lot of compute intensive data
operations, data parallelism can offer better performance im-
provement than task parallelism
 Data flow and data structure evaluations on the code
provides scenario for the parallelization opportunities [9]. In
particular, the data flow is helpful in determining whether the
application exhibits functional or data parallelism. When there
are a number of independent tasks that can run in parallel, the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2277
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

application is well-suited for functional decomposition. When
there are a large set of independent data that is handled
through the same operation, the application is well-matched
for data decomposition. OpenMP which is a compiler directed
method, is intended to express data parallelism [10]. Thread
libraries such as, POSIX threads (Pthreads) developed for
Linux and other operating systems, are also useful. OpenMP
and Pthreads are the most common packages used in the case
of shared-memory system. For either functional or data paral-
lelism, the programmer may write explicit threads to instruct
the operating system to run these tasks concurrently.

When switching an application from single processor
device to multicore, the first obvious solution is to write the
different threads or functionalities from scratch. The designer
can depend on, for example, the POSIX thread library for
thread management to explicitly describe the data communi-
cation between threads [11]. In both scenarios, the designer is
fully responsible for the parallelization. It is an error-prone
and time-consuming task since the designer must add data
communication and synchronization explicitly. This re-
strictions the exploration and usually means a far from opti-
mal result even if it produces functionally correct solutions. A
better approach is to create the parallel tasks using a high-
level API (Application Programming Interface) such as
OpenMP [12]. It naturally supports parallel execution of inde-
pendent loop iterations or tasks. However, in many embedded
application fields such as, wireless baseband processing and
video coding, loop iterations and tasks are hardly completely
independent and so need communication and synchronization
between a subset of threads [13].

OpenMP provides some very useful APIs for parallel-
ization, but it is the programmer's responsibility to identify a
parallelization strategy and then use the relevant OpenMP
APIs [14].Depending on the application code and the use-case,
decision of what code snippets to be parallelized are taken.
The 'omp parallel' construct, can essentially be used to paral-
lelize any redundant function across cores. If the sequential
code contains 'for' loops with a large number of iterations, the
programmer can leverage the 'omp for' OpenMP construct
that splits the 'for' loop iterations across cores.

3 DESIGN AND IMPLEMENTATION

3.1 Hardware
The Embedded Multicore Platform used is Freescale Semicon-
ductor’s IMX6Q Sabre Lite board. This board features Free-
scale’s advanced implementation of the quad ARM Cortex™-
A9 cores, which operates at speeds up to 1 GHz and having
1GB RAM. The multimedia performance of each processor is
enhanced by a multilevel cache system, Neon MPE (Media
Processor Engine) co-processor, a multi-standard (3D 1080p)
hardware video codec, 2 autonomous and independent (2D

and 3D) image processing units (IPU). Neon co-processor fa-
vours the SIMD (Single Instruction Multiple Data) processing,
which will enhance the speed of processing.
3.2 Software
The board was already ported with Timesys Embedded Linux
Operating System which was of the version Linux 3.0.15. By
powering on the board, the Linux OS gets booted and makes
the board ready for running the application. The execution of
the application on the board is seen in the host PC through the
serial terminal using the RS232 cable connected between the
two. Minicom serial terminal is used for this purpose.

3.3 Application
 Lane Departure Warning system (LDWS) is the applica-
tion which is selected to run on the board. It is a Safety Critical
Driver Assistance Automotive application. It is a real time im-
age processing application which is used to alarm the drivers
when the vehicle crosses the lanes. Basically the application
consists of a series of modules which helps it to acquire the
inputs, process it, manipulate and display the outputs. The
application source code consisted of nine C files to incorporate
the modules.
 The application’s input is the images taken while driv-
ing using the camera fitted on the vehicle. The images were
taken in such a way that it contained too many lane crossovers
in order to see if the application can give correct when execut-
ed on the multicore board. These images are the input to the
LDWS application. After acquiring the inputs, the images are
processed and the information in it are extracted. After vali-
dating the lanes, the corresponding warnings are generated.
3.4 Cross Compiler Toolchain

 The cross compiler toolchains used to compile and
build applications for this embedded board are Linaro Arm
Toolchains which is gcc-arm-Linux-gnueabihf-4.7.3 and gcc-
arm-Linux-gnueabi-4.6.2 . It is called as cross compiler because
it compiles and builds the application in the host system
(Desktop PC) and it is meant to run on the embedded target
platform. The former one is a hard float ARM compiler which
builds the application to a hardware related assembly code.
This helps in using the inbuilt features in the embedded board
such as Neon co-processor which helps in parallel execution of
floating point operations. The latter is a soft float ARM com-
piler which uses the integer registers on the board for the
floating point operations.

3.5 Implementation
When the application was considered for paralleliz-

ing, it was first decided to go for task parallelization ie., par-
allelizing the frames. Since the process is quad core, it can run
4 frames in parallel. But the problems came up because of the
use of shared variables. A large memory was used for each
frame and replicating it for 4 frames at a time was impossible

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2278
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

as far the embedded board is concerned. The second option
was to parallelize the different processes done on each frame.
It too caused a problem since the output of one module de-
pends on another. So one has to wait for another for execution.
Since it is an image processing application, there are large
computations done with the data in the frames and it contrib-
uted for most of the execution time of the application. So loop
parallelization was the best option and it was decided to be
done.

For this, the functions containing the for loops, which
are taking more time for time for execution is found by profil-
ing using gprof. Then the for loops used inside those functions
are analyzed to figure out whether they can be parallelized or
not. The analysis include examining the data structures to as-
sess whether parallelism may create data dependencies, caus-
ing incorrect execution or negatively impacting performance.
One source of data dependency occurs when multiple threads
write to the same data element. Without additional synchroni-
zation code, this can produce incorrect results.

By the detailed analysis of the application code and
profiling, the for loops which needs to be parallelized to in-
crease the performance is found out. It is parallelized using
the OpenMP API since it favours data parallelism. It is done
by putting the constructs above the for loops that can be paral-
lelized. The variable that needs to be put in each clauses has
been figured out using careful analysis. Otherwise, it will re-
sult in incorrect results. The parallelization was done for four
for loops in the application source which was taking more
time to execute.
 Apart from the parallelization, the application was
build with different compiler options and found the best com-
bination which favoured the ultimate performance. The differ-
ent options are:

1) Compiler toolchains
2) GCC Optimization flags
3) Neon co-processor in-built in the board.

The compiler toolchains used were gcc-arm-Linux-gnueabi-
4.6.2 which is soft floating point ARM compiler and gcc-arm-
Linux-gnueabihf-4.7.3 which is hard float. The application was
executed with and without the optimization flag –O2. The
other optimization flags were also checked, but –O1 & -O2
gave less performance and incorrect results respectively. So
main focus was to check application performance on the board
using the –O2 flag. Also the choice of Neon co-processor or
Vector Floating Point (VFP) to use for the floating point calcu-
lations, were also analyzed by running the application with
corresponding builds. VFP is the software floating point emu-
lation.

4 PERFORMANCE EVALUATION
Both the sequential and parallelized application were executed

on the desktop and board with various configurations and
results are tabulated. The AlgoFPS denotes the speed of execu-
tion of algorithm in the application and AppFPS denotes
speed of execution of the application.

Table 1

Performance of serial code on desktop

FPS stands for Frames Per Second. CFLAGS are the compiler
flags that are set in the makefile with which the application is
built by the compiler. Tables 1 & 2 shows the performance of
serial code on desktop and the performance of serial code and
parallel code with different compiler options on the board
respectively
 From the experiments conducted, the configuration con-
sisting of parallelized application, O2 optimization flag, hard
float arm compiler, and Neon co-processor gave the best per-
formance with a performance increase of approximately about
2.5 times considering the board and the PC. Comparing the
baseline performance of board, the same configuration gave a
performance increase of about 10 times. This experiment
shows the performance improvement that was achieved by the
effective use of code parallelization, choice of compilers, opti-
mizations and the usage of inbuilt peripherals, for porting the
automotive application into the embedded multicore platform.

5 CONCLUSION AND FUTURE WORK
The legacy codes which are made to run on the single core
machines can be effectively ported into embedded multicore
platforms with large performance improvement by paralleliza-
tion of the code, compilation parameters and the usage of in-
built peripherals. Since the automotive applications compris-
ing of image processing are being researched and developed,
this work can be used as a reference for porting those applica-
tions into embedded multicore platforms in the vehicles for
increased performance. The performance of the application on
the embedded board can be further increased by offloading
some of the code on to Graphics Processing Unit (GPU) avail-
able on the board which has numerous processing units in-
side. It will be challenging to figure out which and what por-
tion of the code needs to be given to the CPU and GPU for
better performance.

Compiler
Version

CFLAGS
 (Type of
compiler,
opt levels)

GPU /
Floating
point pro-
cessor

App
FPS

Algo
FPS

 Gcc 4.4.3

 NIL

 NIL

 17

 18

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2279
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table 2

Performance comparison with serial code & parallelized
code on Board

References
[1]P.Leroux, R.Craig, “Migrating Legacy Applications to Multicore Pro-
cessor”, Military Embedded Systems.
 http://www.mil-embedded.com/pdfs/QNX.Sum06.pdf, 2006.
[2] Nemati F, Kraft J, Nolte T, “Towards migrating legacy real-time
systems to multi-core platforms” , IEEE International Conference on
Emerging Technologies and Factory Automation, 2008, pp. 717 – 720.
[3] J.H. Anderson, “Real-time scheduling on multicore platforms”, In
Real-Time and Embedded Technology and Applications Symposium,
2006.
[4] W. Hwu, K. Keutzer, and T.G. Mattson, “The concurrency chal-
lenge”, IEEE Design and Test of Computers, 2008, pp. 312-320.
[5] Seppanen A, Mikkonen T, “Porting Legacy Applications to Multi-
core: Experiences from an Industrial System”, 17th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Pro-
cessing, 2009, pp. 127 – 132.
[6] Manfred Kreutzer,“Development of Complex Multicore Systems:
Tracing Challenges and Concepts”, Mentor Graphics, 2012.

[7] S. Singh ,“Challenges of programming multi-core microprocessors”,
IET and Electronics Weekly Conference on Programmable Hardware
Systems,2008, pp. 1-29.
[8] Jie Zha,Yongmin Yang,Ge Li, "Real-time Image Processing System
Based on Multi-core Processor", Third International Symposium on
Intelligent Information Technology Application, 2009, vol.1, pp.329,332.
[9] Mignolet J.Y, Baert R, Ashby T.J, Avasare P, Hye-On Jang , Son
J.C, “MPA: Parallelizing an Application onto a Multicore Platform
Made Easy”, IEEE Micro 2009, pp.31-39.
[10] Dagum L, Menon R, “OpenMP: An industry standard API for
shared-memory programming”, IEEE Computational Science and
Engineering ,1998, pp. 46-55.
[11] Bob Kuhn, Paul Petersen, Eamonn O.T, “OpenMP versus
Threading in C/C++”, 2007.
[12] Diaz J, Munoz-Caro C, Nino A, “A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era ”, IEEE Transactions
on Parallel and Distributed Systems, 2012 , pp. 1369 – 1386.
[13] B. Chapman, G. Jost, and R. van der Pas, “ Using OpenMP: Porta-
ble Shared Memory Parallel Programming”, MIT Press, 2007.
[14] Mohan Rajagopalan, BrianT.Lewis,Todd.A.Anderson, “Thread
Scheduling for multicore platforms”
http://www.usenix.org/event/hotos07/tech/fullpapers/rajagopalan.pdf,200
7.

Com-
piler

Version

CFLAG
S (

Type of
Com-
piler,

Optimi-
zation

Levels)

GPU /
Floating

Point Pro-
cessor

Serial
Code

Parallel
Code

Result
Ap
p

FP
S

Alg
o

FP
S

Ap
p

FP
S

Alg
o

FP
S

Linaro
Tool
chain
GCC
version
4.7.3

O2,
hard-fp

 Neon
10

13

20

42

 Match-
ing

 Linaro
Tool
chain
GCC
version
4.7.3

No
optimi-
zation
flags,H
ard-fp

 Neon

3

4

8

10

 Match-
ing

Linaro
Tool
chain
GCC
version
4.6.2

O2,
 soft-fp

 VFPV3

10

13

9

12

 Match-
ing

Linaro
Tool
chain
GCC
version
4.6.2

 No
optimi-
sation
flags,
soft-fp

 VFPV3

3

4

8

9

 Match-
ing

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nemati,%20F..QT.&searchWithin=p_Author_Ids:37604100000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kraft,%20J..QT.&searchWithin=p_Author_Ids:37297528700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nolte,%20T..QT.&searchWithin=p_Author_Ids:37298874100&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4638477&contentType=Conference+Publications&queryText%3DTowards+Migrating+Legacy+Real-Time+Systems+to+Multi-Core
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4638477&contentType=Conference+Publications&queryText%3DTowards+Migrating+Legacy+Real-Time+Systems+to+Multi-Core
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4631965
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Seppanen,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mikkonen,%20T..QT.&searchWithin=p_Author_Ids:37271882500&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4912924&contentType=Conference+Publications&queryText%3DPorting+Legacy+Applications+to+Multicore%3A+Experiences+from+an+Industrial+System
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4912924&contentType=Conference+Publications&queryText%3DPorting+Legacy+Applications+to+Multicore%3A+Experiences+from+an+Industrial+System
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mignolet,%20J.-Y..QT.&searchWithin=p_Author_Ids:37689803200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Baert,%20R..QT.&searchWithin=p_Author_Ids:37937166600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ashby,%20T.J..QT.&searchWithin=p_Author_Ids:37937167600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Avasare,%20P..QT.&searchWithin=p_Author_Ids:37392024100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hye-On%20Jang.QT.&searchWithin=p_Author_Ids:37934242700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Son,%20J.C..QT.&searchWithin=p_Author_Ids:37389779000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Son,%20J.C..QT.&searchWithin=p_Author_Ids:37389779000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Diaz,%20J..QT.&searchWithin=p_Author_Ids:38235743600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Munoz-Caro,%20C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nino,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6122018&contentType=Journals+%26+Magazines&queryText%3DA+Survey+of+Parallel+Programming+Models
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6122018&contentType=Journals+%26+Magazines&queryText%3DA+Survey+of+Parallel+Programming+Models
http://www.usenix.org/event/hotos07/tech/fullpapers/rajagopalan.pdf,2007
http://www.usenix.org/event/hotos07/tech/fullpapers/rajagopalan.pdf,2007

	1 Introduction
	2 Literature Survey
	3 Design and Implementation
	3.1 Hardware
	3.2 Software
	3.3 Application
	3.4 Cross Compiler Toolchain
	3.5 Implementation

	4 Performance Evaluation
	5 Conclusion and future work

